Chapter 7
Magnetic Field

7.1 Magnetic Field
experiences magnetic force in B-field.
A mowng charge
can generate B-field,
Magnetic field H due to moving point charge:
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Howrever, a single moving charge will MOT gencrate a steady magnetic Hield.
atafionary charges  generate  steady E-feld.
steady currents generate  steady B-field.
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Magnctic ficld at point & can he
aobtained by integrafing the contribu
tion oo ndividual current segiments.
(Principle of Superposition)
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Biot-Savart Law is to  magnefic field

Coulomb’s Law  is o electric field
Basic element of E-feld: Electric charges dy
Basic element of B-field: Current element 1ds

b

Example 1 : Magnetic ficld duc to straight current segment
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Limiting Cases : When L = d (B-ficld due to long wire)
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Recall - E =

for an infinite long line of charge.

Example 2 - A circular current loop
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Notice that for every current element o5}, generating s magnetic field o5,
at point P, there is an opposite current element id&, generating B-field
el =0 Lhat
By siney = —d H; 5in o
Cmly vertical component of B-field needs to be considered at point P,
aslr
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Limiting Cases
(1) B-field at center of loap:
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(2} For z 3 R,
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Recall E-field for an electric dipole:  E = i
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A circular curvent loop is also called a magnetic dipole.
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(3} A current arc:

B = j dld eosa
L —
pround £ =0 =
Cireiit e =1 here
R = length of a
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Example 3 : Magnetic field of a solenoid
Solencid is used to produce a strong and undform magnetic field inside its
coils,

B Rerreansese®
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Solenoid Tightly-packed
coils of wire
Congider a solenoid of length L consisting of & tums of wire.

Define: n = Number of turns per unit length = JT

-

P o4
| —
Clonsider B-field at distance d from the B feee-®
center of the solenoid: d R
For a segment of length dz, number of stk -
current turns = ndz F R
Total current = nd oz E E E
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Using the result from one coil in Example 2. we get B-field from coils of
length oz at distance z from center:
o gl nd o 2) R
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H
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along negative = direction
Tdeal Solenoid -
L% R
then F=20141)
i . direction of B-field determined
FoTtd b rr'r,l.ilﬂ-.rp;r.l.'! serea rle

Question : What is the B-field at the end of an ideal solenoid? p=z

7.2 Parallel Currents
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Magnetic field at point P B due to two

currents ¢ amd is is the wector swm of » o
the B fields By. 8y due to individuoal cur- fl@ i,
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Force Between Parallel Currents

Consider a segpment of length L on i :
Hhaty

fi:, = i:: [pointing down) ﬁ-:! = m [ pointing up)

Foree on iy coming from §;:

= R Li .
|Fa| = il % By = '“ﬂ_j ‘;2 = |FI;-_:_-| fel ' of ampere, A}
2n

Parallel currents atfract, anti-parallel corrents repel,

Example : Sheet of current

Consider an infinitesimal wire of width dx at position . there exists another
clement at —x so that vertical B-field components of B, and B_ | cancel.
Magnetic field due to dr wire:
jip - o
2xr

af = where di = *{1_‘?}

Total B-field {pointing along —x aris) at point P
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Variable transformation [Goal: change r.x to d @, then integrate over #):

d=reosfl = 7 =dsect
r=dtand = dr = dsec? do

s : . i,
Limits of interration: -8 ta #, where tat g ﬁ
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Limiting Cases :

(1} d = a
iF T
tan#d = — = f#= —
2d 2
B = fii B-field due to
T e infinite long wire

(2} o < a (Mmfnite sheel of current)

il T
Lk znl D0 = 3
flat - ;
H=— o stant!
gLt

Question : Large shoot of opposite Howing currents.

What's the B-field between & outside the sheets?

7.3 Ampere’s Law

In our study of electricity, we notice that the inverse sguare force law leads
to Gauss’ Law. which is nseful tor finding E-ficld for spstems with high level of
sRTRIRET),

For magnetism, Gauss' Law is simple
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A more usetul law for caleulating B-field for highly svimmetric situations is the

Ampore’s Law:
f ?gﬁ-d'f-__uuﬁ

o i

j‘xg = Line inlefral evaluated around a closed loop € {Amperian curve)
r
!

Net enrrent that penetrates the area bounded by curve O (topological property)

Convention : Use the right-hand serew rule to determine the sign of carrent.

By,

‘If;f?-d; = jigliy — iy + ig — i4)
a

= .”n{ﬁ = -':1}

Applications of the Ampere's Law :

(1) Lomg-straight wire

Construct an Amperian
curve of radius d:

By spmmetry angument, we know B-field only has fangential compo

el )
?‘J B-ds = fint
o
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Take 45 to be the tangential vector around the circular path:

B.di = Bads
3 ?‘; s = gl
Fa
Circumference
of circle = 2xd
Bl2rd) = pnt
i Mot

B-field due to long.
atraight curiend

— 2nd

(Compare with 7.1 Example 1)

(2} Inside a current-carrving wire

g |

implies  that

i-'l'l!'g'llrl'll'!rll'

symmetry
taregential

B is
to the Amperian curve and

8 — B

Again,

Consider an Amperian curve of radius r{< [)
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Recall: Uniformly charged infinite long rod

(3) Solenoid {Tdeal)

Consider the rectangular
Amperian carve 1234,
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?Sﬁ.r:_ﬁ;--fﬁ.m[g;;xa’hfg/m?_.lf/r%
: | vy

j' B j - B.-di =0 imsicle solenoid
2 n P B B 0 outside solenoid
[ Y B =0 outside solenoid
S

Bt fipg = nl i

?g B di= [ B.di= Bl = jlgire
—

?':I I:III1_:|I | 1:-r I'\l::ll]."i :III(:I.I |I.h'|.|.

A B = jyni

Note .
(i} The assumption that £ = 0 outside the ideal solenoid is only
approcmale. [Halliday, P 763)
(i1} B-field everyvwhere inside the solenoid is a constant. (for ideal
s lemoid )

[4) Toroid (A crewlar selenond)

Ao lonn

(i

s tutns

2pprowirtatad
&5

—

By symmetry argument, the B-field lines torm concentric circles fnside
the Forand.
Take Amperian curve C to be a circle of radius v inside the toroid

if} o H?gds = B.27r = ppl V1)
- o
inV1
B =L

inside toroid
2xr
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Note :
(i} B # constant inside toroid
(1) Outside toroid:
Take Amperian curve to be circle of radius r > R.

%J’; AF = fﬁidh =838 = jig iy =0
£ i
B=1

Similarlyv, i the central cavity B =10

7.4 Magnetic Dipole

Recall from §G.4, we define the magnetic dipole moment of a rectangular
current loop

= NiAn

where A =  arca unit vector with dircction
determined by the right-hand rule
N = Number of turns in current loop
A = Area of current loop

This 15 actually a general definifion of a magnetic dipole, i.e, we use it for
current loops of all shapes.

A commmon and svmmetric example: circular current.,

i

i

i

i
Recall from §7.1 Example 2, magnetic z .
field at point P (height = above the ring)

Fi
i
pat [0 Jipl

B=omt 297 TR+ 2PR
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MAGNETIC DIPOLE IN A CONSTANT B-FIELD

At distance = 5 /i

= Haft A P
B = m— E=
P e dreg st
due to magnetic dipole due to electric dipole
{for z = R) (for z = d)
F
z | =inR*R
?“ i : 3
I

Also, notice  ji

R8T

Amd

Jf'l .T'l

|

s [mik:
magnetic dipole moment

Permeability of free space
47 % 107" Tm/A

7.5 Magnetic Dipole in A Constant B-field

[n the presence of a constant magnetic field, we have shown for a reclongular

current loop, it experiences a torgue

dipole in general.

—

r=jgix B}

[t applies to any magnetic
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Ru:ﬂali-:nn al o
(. .

o External magnetic field aligns the magnetic M 1
dipoles, K/ Lok

\

—ﬁ—} :}—Iﬂ—r

& @ Direction of ©

Similar to electric dipole in a E-field, we can con-

sider the work done in rotating the magnetic di- /_\
pole. (refor to Chapter 2)

-

-
%

dil = —dll, where U7 is potential energy of dipole

=—ji-8

MNote -

(1) We cannot define the potential energy of a magnetic field in general.
However, we can define the potential energy of a magnetic dipole in a
constant magnetic field.

(2} In a non-uniform external B-field. the magnetic dipole will experience
i net force fnot only net forgue )

7.6 DMagnetic Properties of Materials

Recall intrinsic electric dipole in molecules:

Intrinsic dipole {magnetic) in atoms:

In our classical model of atons, electrons

-
' .
s b F (M)
revolve around a positive nuclear. L /
-
o,

"Current” & = where P is peried of one orbit around nucleus

©
P ,
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! v B ; :
P =—. where vis velocity of electron
#

Orbhit magnetic dipole of atom:

(ah , ET
p= A = (=] [rr?) = —
4 I: Eﬂrrj = 2
Recall: angular momentum of rotation { = mro
€
[ = — Ilr
H= am

In guantum mechanics, we know that

!
[ is quantized. 1.a. =N 2—_'__

where N = Any positive integer (1.2.3. ... )
h = Planck's constant {(6.63 = 1077 . 4

Orbital magnetic dipole moment

eh

P!f — —— .:'.r
A
e

Bohr's magieton uqm=9027«10-20,T
There 1= agother source of intrinsic magnetic dipole moment mmside an atom;
Spin dipole moment: coming from the intrinsic “spin” of electrons.

Cuantum mechanics suggests that €7 are always spinning and it's ether an ™ up”
gpin or a " down” spin
pte = 965 x 10 =g

: : ' 7
S0 can there be induced magnetic dipole?

Ol > Surfoce
Effect jt'ur..lt'!r{ &

- "

Induced g aligned
with B-held

o
!
o

1



7.6. MAGNETIC PROPERTIES OF MATERIALS

Recall: for electrie held

Eﬂ']r‘l':-c'!l'll' -F"-r-Em-.'uum - h.n = 1

For magnetic Held in a material:
‘r}lu I — I-i‘r-ll T IE_i"l
[
applied B-fiehl produced
-field b imadweced dipoles

In many materials (oxcopt forromagnet "-\.}
By o Hy

Define

-E.-'l.l' = X'm 'ﬁl'.l

Vo 1% & number callod magnetic susceptibility.

Hu.ll ar jEl;u o5 "I. ||:--|r-j:LI
- [] + .!l..lll] ‘rjlfl

E.'Il’l' = Py Eﬁ- 1 l";r.q — l LI 'ﬁ_:u

Define : &, is a number called relative permeahility.

One more term ...
Define : the Magnetization of 4 material:

"|.|i' = ﬂ where 4 18 magnethe dipole
L moment, V0 oi8 valiwme

[or, the net magnetic dipole moment per unit volume)

In most materials {oxcept erromagneds),

.I'.ir_t_u = II'E|;||I|.I.r

Three types of magnetic materials:
(1) Paramagnetic:

K = 1 induced magnetic dipoles aligred
(¥ =0 writh the apphed B-field.
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e.g. Al (ym =22 x 1075, Mg (1.2 x 107%), Oy (2.0 x 107%)

(2] Diamagnetic:

Km 1 induced magnetic dipoles aligned
(¥me = 0) 7 opposie with the applicd B-ficld.

a.g. Cu (ym=—-1x107%), Ag (=26 x 107%), N, (=5 x 1079)
(3) Ferromagnetic:

a.g. Fe, Co, Ni 1
Magnetization not linearly proportional 2 .a'/
to applicd ficld. . P
T Happ
= 2 pot a constant  (can be as 2{1
Bﬂ?'ul"
big as ~ 5000 — 104, (40

hysteresis curve
(hysteras: [Greak! ] later. behind}

Interesting Case : Superconductors
Xm = -1

A perfect diamagnetic
N0 masnetic feld inside.

T>T r=T
- __,-F“__F _"-\-\__':,
5 S et S s
o I T
:E""'f —




Chapter 8

Faraday’s Law of Induction

8.1

Faraday’s Law

[n the previous chapter, we have shown that sfendy electric cuwrrent can give

steady magnetic field because of the symmetry between electricity & magnetism.
Steady magretic field can give sfeady electric current.
OR  Changing magnebic field can give steady electric eurrent.

We can ask:

Define

(1) Magnetic Hux through surface S:

P, = [ B-dA

=

Unit of 4, :  Weber (Wh)
1Wh = 1Tm?*

(2} Graphical:

P, = Number of magnetic field lines passing through surface 5

Faraday™s law of induchion:

where

Induced emf [£] = _-'f|

Iiq:':u
il

N = Mumber of coils in the cirewit,

®
W
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o . % it 4 .TB
X X )
4 - 4 : |
4 * w Expanding loop variable B-filed Rotating loop
B = Constant B = Constant B = Coustant B = Constant
,J: = {onstand -i = Clonstant dHJ-"rF{ =0l A = Constant
dA/dt £ 0 A = Comstant dA/dE £ 0
E=10 5 |El =10 s E =0 S E =0

MNote : The mduced emf drives a current throughont the cirenit, similar to the
function of a batfery. However, the difference here is that the indaced conf
1 distribnded throughont the ciresl. The consequence 15 that we cannof
define a potential difference befween any two pornds e the etremd

Suppose there is an ndwced cwrrend in the loop. can we
define AVyg?

B e |
Recall: Ar——h——
E
< AVag =Vi—-Va=iRt >0
..-4 ! AR 1 A {

== Vi>¥a

Goimng anti-clockunse (same as i),

If we start from A. going to B.  then we get 1 > Vo

If we start from B, going to A, then we get Vi = V)

We cannot define AV g 1!

This situation is like when we study the anferior of o battery.
A battery . . chemical reactions.
© | provides the energy needed to drive the

, charge carriers around the cirout by ;
The loop changing magnetic fhox.

SELTE S U_||r l."!]'.l'l-_lr J'.!-I'.I'I'I!-t'-l!l‘:‘l'.'ll-n"n;-!'.' FLEEETLS

8.2 Lenz’ Law

(1) The Hux of the magnetic field due to nduced current. opposes the change
in flux that canses the induced current.
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(2) The induced current is in such a divection as to oppose the changes that
produces it,

(3) Incorporating Lentz’ Law into Faraday's Law:

i
E fona -,"r T
YT
dip dnin
i ! L w0, B 1 =_ £ dppenin Tnduced current
i APpears.
” B-field due to s change in &,, »o thyad &, |

induced current

(4) Lenz’ Law is a consequence from the pnnciple of conservation of energy.

-\IJI Molion eiwed
B_§3 = [E_KNN__3
.“Q T-\.l.?ngrﬁ-hlt;
;:h }{ hlaieDfi ICiloratod
——

8.3 DMotional EMF

Let's try to look at a special case when the chonging magnetic flur is carried by
maftion in the circigl wires

) B i
; : &z
Consider a conductor of length L moving x
with a velocity ¢ in a magnetic feld &. ¢ . IJT
3
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Hall Effect for the charge carriers in the rod:

=2

Pf.ﬁ_ B =10
= gk +gf % B=0 {where £ ie Hall electric field)
= FB=_fw B

l —_
AY = [ £ ody
i

AY = =EL

Hall Voltage inside rod:

Hall Voltage : AV =vBL

Now. suppose the moving wire slides wathout

friction on a stationary U-shape conductor. _ a7 Ea :
The motional cmf can drive an electric cur- '
rent i in the U-shape conductor, % x |y
=+ Power is dissipated in the cirenir.
= Pow = Ti {.]'nnlr!':-,l heating) ! =

~. i * s

(see Lecture Notes Chapter 4)

What is the source of this power”
Look at the forces acting on the conducting rod:

o Magnetic force:
F. = {Ex B
Fo. = LB (pomting left)

o For the rod to continue to move at constant velocity v, we need to apply

an external force:

i
3

vt = —F =iLB  (pointing right)

Power required to keep the rod moving:

Py = Fosrodl
— EBL.!'{I
- EHL:{—t
= 18 d[;:;] :::ti:f&:qul:r':'":;-?t’llil:l
= 'i'[‘i . ST D SRR
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Since enetgy is not beinge stored in the svsten,

-Pln _E’.-ll-‘ = D

i
V4 i—" = 0
et
dip
We “prove” Foraday’s Law = |V =- ”'“
i

Applications :
(1) Eddy current: moving conductors in presence of magnetic field

o H o e L'
Ineluead curvent

il £
M : * * = Power lost in Joule's heating [ —}
C e s (%)

= Extra power input to keep moving

y " =

o R

-~

To reduce Fddy currents: ;

(2} Generators and Motors
Assume that the circuit loop is rofeting af a constant angeler velocity

w, {Source of rotation, e.g. steam produced by burner, water falling

from a dam)

Sliding contacts

R x

{D\
~i7 R

X

E M 5 w3

B
A
f e
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Magnetic flux through the loop

Numbser of coils
|
=N |I B-dA=NBAcm#
lieaa j

changrs with time! @ =

fp = NBAcoswt

i {
Induced emf: £ = — ;::H —."n"E.—'I%I:{'mw!}
[ i
= NBAwsinwt
Induced current: = B = L .i:-'i*' SI1L et

Alternating current (AC) volfage generator

i

-
K
|
|
|
- T - >
Ty I.:-:. ?
1
|
i
ANLi= o ket
—T _-\,,I__ ¥ t t _:'-_r
[P el T

Power has to be provided by the source of rotation to overcome the
torque acting on a current loop in a magnetic feld.

It
——

F = NiAxB
T = NzABsnf
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The net effect of the torque is to appose the rotation of the coil.

An electrie maotor s simply a generafor 5
aeTating in reverse, l ‘
= Replace the load resistance R with )
a battery of emf £, |

With the battery, there is a current in the coil, and it experiences a
torgue in the B-feld.
= Rotation of the coil leads to an induced emf, £,.4, in

the dircction opposite of that of the batiery (Lenz”  Law)
& Extairinl -aml
- R
| ——w
5
i £ 'El.-l.-l
I |
|:
4 {@lae kmnown
molat Al bBlichk el
far meodoes |
= As motor speeds up, E.0 T, - § |

mechanical power delivered = torque delivered = NiAR sind |
In conclusion, we can show that

5
-Pnlrrrr i i L -Fu-w-'l'lu.-ll: !

Electric power input Mechanical power deliversd

8.4 Induced Electric Field

So far we have discussed that a change in mag-
netic Hux will lead in an induced emf distributed
i the loop, resulting from an induced E-field.

5 BT = anti-clockwize current
Bl = plockwise current

However, even in the absence of the loop (5o that there is no induced current),
the induced E-field will still accompany a change in magnetic fax,
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u; b H;._ '
o \{IEM
] - & & i L A
- Consider a circular path in a region ij,r" ot
with changing magnetic field. ':i":'-l'ﬂ"“\u o
path ; }:‘-q = e .
BT

The induced E-ficld only has tangential components. (i.e. radial E-ficld = 0)
Why ¥
[magine a point charge g travelling around the circular path.
Work done by induced E-field = g Finq - 270
N

foreo disdance

Recall work done also equals to quf, where £ is induced emf

E=F, Orr

£ = 51!; E, .p-d3

where ﬁ i5 line intesral around a closed loop. E,,,d 5 indoced E-field. £ is
tangential vector of path.
Faraday's Law becomes

] . B T g
¢ EIII-'J . I'F.'!:' —_— ﬁ /’ H ' -r.l'.-“’a
[

Cienerally,

o
LHS = Integral around a closed loop O
RHS = Integral over a surface bounded by O

Divection of @A determined by direction of line integration C (Right-Hand Rule)
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"Regular™ E-feld

created by charges
E-field lines start from 4ve and end
on —ee charge

eP— @

can define clectric potential so that
we can discusa potential difference
betwesn two points

i

Clonservative force field

Toncluced E-field

created by changing B-field

E-field lines form closed loops

-

Electrie potential cannot be defined
(or, potential has no meaning)

b

Mon-conservative foree field

The classification of electric and magnetic effects depend on the frame of reference
of the ebserver. a.g. For motional emf, observer in the reference frame of the
moving loop, will NOT see an induced E-feld, just a "regular” E-field.

(Read: Halliday Chap.33-6, 34-7)



